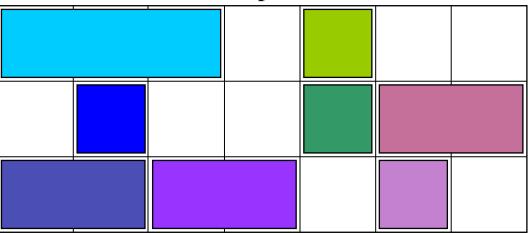
Iterative Forward Search: Combining Local Search with Maintaining Arc Consistency and a Conflict-based Statistics

Tomáš Müller¹,Roman Barták¹, Hana Rudová²

- ¹ Faculty of Mathematics and Physics, Charles University {muller|bartak}@ktiml.mff.cuni.cz
- ² Faculty of Informatics, Masaryk University hanka@fi.muni.cz

Agenda

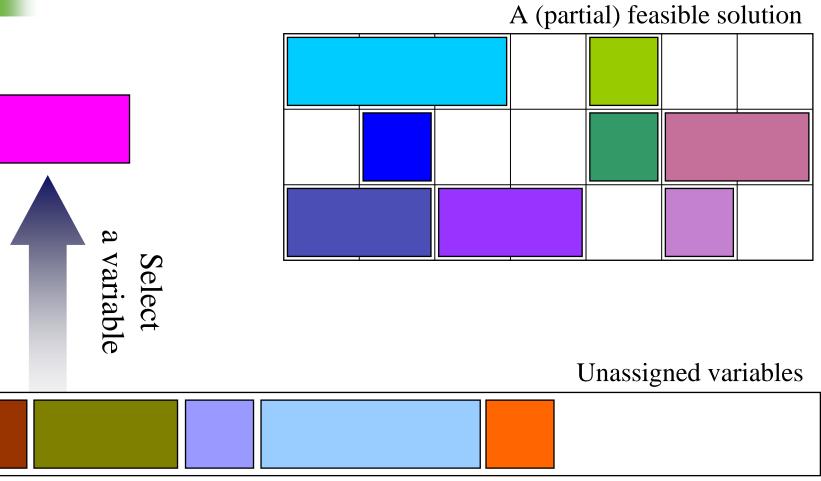
- Iterative Forward Search Algorithm
 - Extensions:
 - Conflict-based statistics
 - Maintaining arc consistency
 - Dynamic backtracking
- Experiments
 - Purdue University Timetabling Problem
 - Random binary CSP
- Conclusion



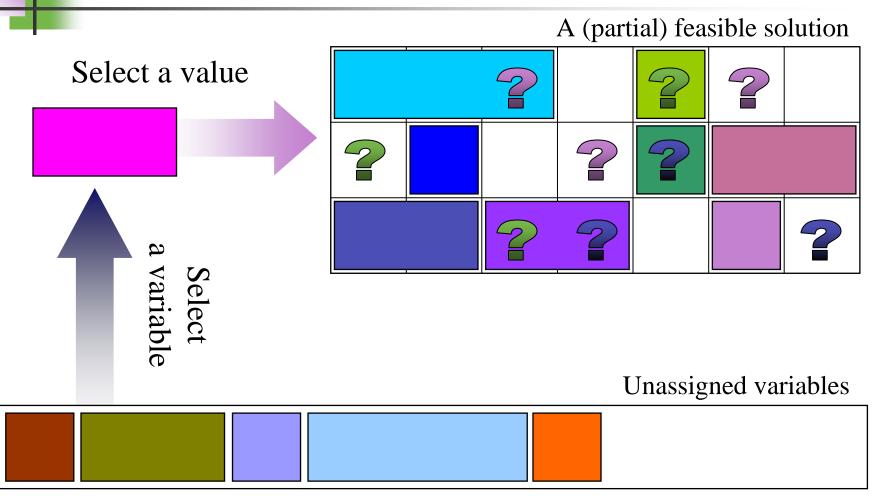
Iterative Forward Search

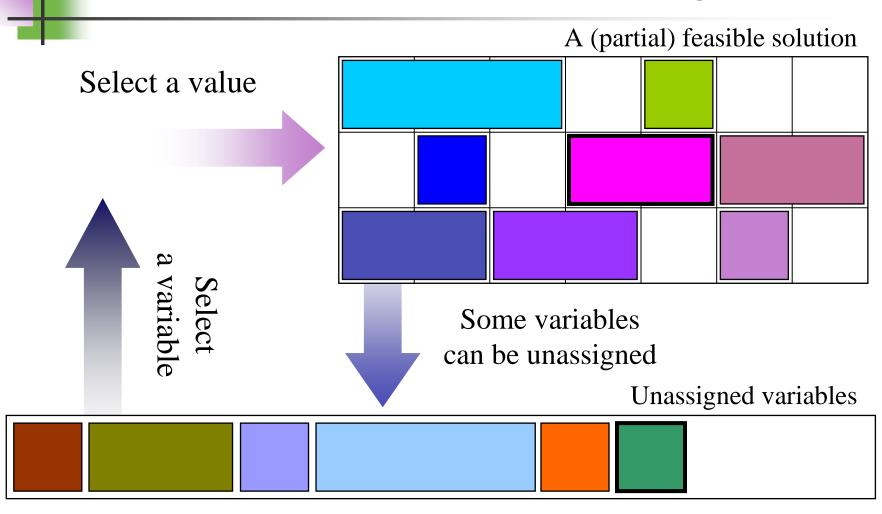
- Basic Approaches
 - Local search
 - Backtracking based search
- Iterative Forward Search Algorithm
 - Forward based search
 - Works in iterations
 - Extending a (partial) feasible solution
 - Interactivity

A (partial) feasible solution



Unassigned variables




Iterative For

Iterative Forward Search Algorithm

Guided by

- Variable selection
 - First-fail principle
- Value selection
 - Best-fit value
- Solution comparator
 - Less unassigned variables, less violated soft constraints, ...
- Termination condition
 - Solution is complete and good enough
 - Timeout or user interaction

Conflict-based statistics

- Idea
 - Memorize conflicts and discourage their potential repetition
- If B=c is unassigned because of the A=a
 - A counter Stat[$A=a,B\neq c$] is incremented

$$A = a \Rightarrow \begin{cases} 3 \times B \neq a \\ 4 \times B \neq c \\ 2 \times C \neq a \\ 120 \times D \neq a \end{cases}$$

Conflict-based statistics

To be used e.g. in value selection

- If a is being selected for variable A
- And there is B=b in a conflict with A=a

Value a is weighted by $Stat[A=a,B\neq b]+1$

Conflicts are weighted by their occurrences in the past

1

Maintaining Arc Consistency

Based on explanations

- $V_i \neq v_i \Leftarrow (V_1 = v_1 \& V_2 = v_2 \dots \& V_j = v_j)$
- When a value is removed from a domain
 - An explanation is attached to the deleted value
- When a variable is unassigned (e.g., $V_x = v_x$)
 - All deleted values which contain $V_x = v_x$ in their explanations have to be recomputed
- Computation
 - FC: Explanation corresponds to the violated constraint
 - MAC: Union of explanations

1

Dynamic Backtracking with MAC

- A special case of IFS with MAC
 - An unassigned variable is always selected
 - If there is a variable with an empty domain
 - A union of assignments of all values' explanations is computed
 - Fail if the computed union is empty
 - The last assignment from the union is unassigned
 - Explanation: all the other assignments in the computed union
 - If a value v_x is assigned to V_x
 - An explanation $V_x \neq v'_x \leftarrow (V_x = v_x)$ is attached to all values from the variables domain different from v_x

- Timetabling Problem at Purdue University
 - Central timetable for large lecture classes
 - 826 classes (forming 1782 meetings)

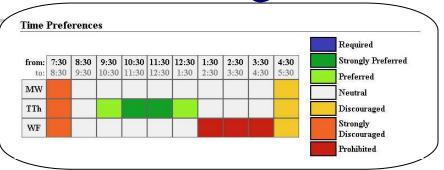
Fall 2004

- some of them (25%) with multiple sections
- 50 lecture rooms (with various equipment, up to 474 seats)
- 89,633 course demands from 29,808 students
- Utilization over 78% (~ 94% for the four largest rooms)
- Timetables for individual departments
 - Done manually for the moment
 - An area for our future work

Experiments: Purdue University Timetabling

For each class

- Student requirements
- Time requirements & preferences
 - Meeting patterns (e.g., 3 x 50 min, 2 x 75 min)
- Room requirements & preferences
 - Capacity
 - Required equipment
 - Room / building preference
- Instructor
- Additional (group) constraints
 - Between several classes (e.g. back-to-back, precedence)
- Other ...


Each student states which courses he or she wants to attend (soft constraint)

Experiments:

Purdue University Timetabling

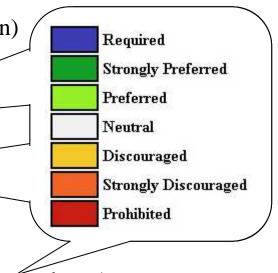
- Student requirements
- Time requirements & preferences/
 - Meeting patterns (e.g., 3 x 50 min, 2 x 75 min)
- Room requirements & preferences
 - Capacity
 - Required equipment
 - Room / building preference
- Instructor
- Additional (group) constraints
 - Between several classes (e.g. back-to-back, precedence)
- Other ...

Experiments: Purdue University Timetabling

For each class

- Student requirements
- Time requirements & preferences

Meeting patterns (e.g., 3 x 50 min, 2 x 75 min)

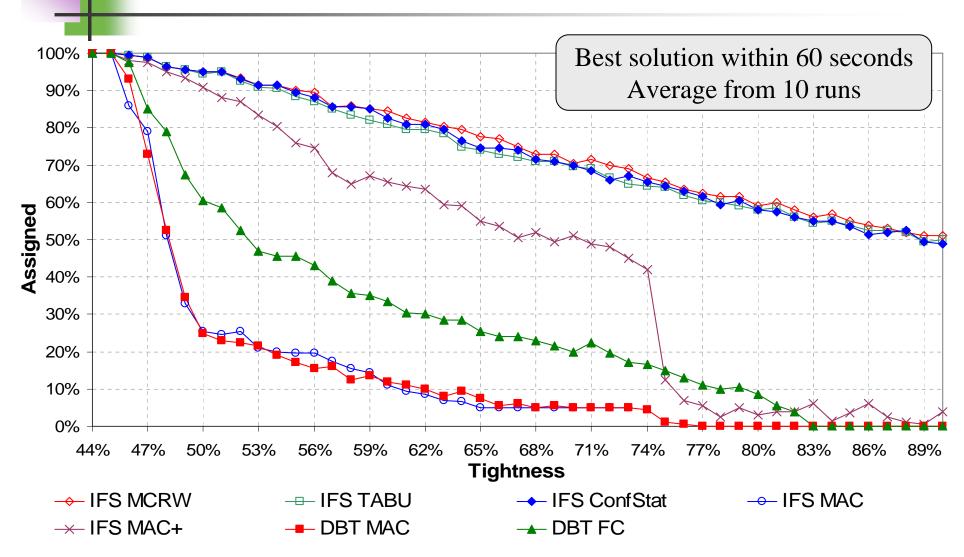

Room requirements & preferences

Capacity

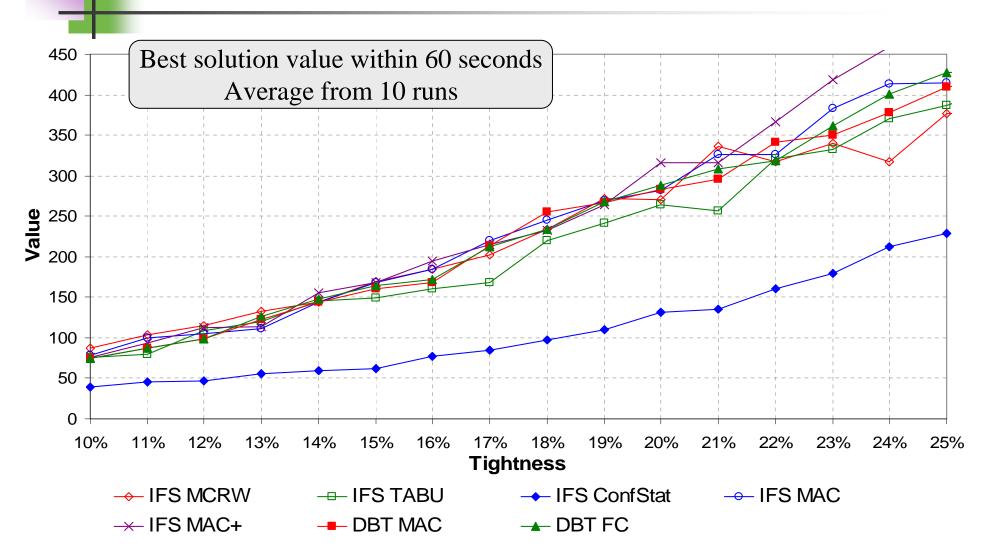
Required equipment

Room / building preference

- Instructor
- Additional (group) constraints
 - Between several classes (e.g. back-to-back, précedence)
- Other ...


Experiments: Purdue University Timetabling

Test Case	IFS ConfStat	IFS TABU	IFS MCRW
Assigned classes [%]	100.0 ± 0.00	97.67 ± 0.15	98.29 ± 0.16
Time [min]	24.11 ± 4.42	24.17 ± 3.62	24.52 ± 3.83
Student conflicts [%]	1.97 ± 0.06	$\boldsymbol{1.97} \pm 0.07$	2.05 ± 0.19
Preferred time [%]	85.64 ± 1.57	89.86 ± 0.69	89.63 ± 1.06
Preferred room [%]	50.39 ± 5.34	66.48 ± 3.42	64.84 ± 3.86


- DBT MAC was able to assign approx. 93% of variables
- IFS MAC was able to assign approx. 94% of variables

Best solution within 30 minutes, 10 runs 1 GHz Pentium III, Java 1.4.2

Conclusion And Future Work

- IFS algorithm with conflict-based statistics
 - Good results on Purdue University Timetabling Problem
- Future work
 - More results
 - Timetables for individual departments
 - On other (not only timetabling) problems
 - Solver improvements
 - Additional requirements from Purdue University
 - Application of conflict-based statistics in other search techniques